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A B S T R A C T
In the field of computer vision, anomaly detection is a binary classification task used to identify
exceptional instances within image datasets. Typically, it can be divided into two aspects: texture
defect detection and semantic anomaly detection. Existing methods often use pre-trained feature
extractors to singly capture semantic or spatial features of images, and then employ different classifiers
to handle these two types of anomaly detection tasks. However, these methods fail to fully utilize
the synergistic relationship between these two types of features, resulting in algorithms that excel
in one type of anomaly detection task but perform poorly in the other type. Therefore, we propose
a novel approach that successfully combines these two types of features into a normalizing flow
learning module to address both types of anomaly detection tasks. Specifically, we first adopt a pre-
trained Vision Transformer (ViT) model to capture both texture and semantic features of input images.
Subsequently, using the semantic features as input, we design a novel normalizing flow model to fit
the semantic distribution of normal data. In addition, we introduce a feature fusion module based
on attention mechanisms to integrate the most relevant texture and semantic information between
these two types of features, significantly enhancing the model’s ability to simultaneously represent
the spatial texture and semantic features of the input image. Finally, We conduct comprehensive
experiments on well-known semantic and texture anomaly detection datasets, namely Cifar10 and
MVTec, to evaluate the performance of our proposed method. The results demonstrate that our model
achieves outstanding performance in both semantic and texture anomaly detection tasks, particularly
achieving state-of-the-art results in semantic anomaly detection.

1. Introduction
Detecting anomalous patterns in data holds significant

importance in both science and industry, representing a
crucial task in visual image understanding. This technique
has found widespread applications in various domains, in-
cluding but not limited to quality monitoring of industrial
components [1, 2], novelty detection [3–5], human health
monitoring [6, 7], and video surveillance [8, 9]. In general,
detecting anomalous patterns in data from an open-world
scenario can be approximately divided into five related sub-
topics: anomaly detection (AD), novelty detection (ND),
open set recognition (OSR), out-of-distribution (OOD) de-
tection, and outlier detection (OD), as discussed in survey
papers [10, 11]. Furthermore, visual anomaly detection,
as one of the widely studied anomaly detection (AD) ,
can be primarily categorized into two types: local texture
defect detection, such as in the case of MVTec [1], and
semantic anomaly detection (usually also dubbed image-
level anomaly detection or one-class classification), as ex-
emplified by Cifar10 [3]. The former focuses on identify-
ing local texture anomalies within images, while the latter
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places greater emphasis on discerning the overall semantic
differences among different images.

As a particular application example in industry, detecting
anomalies from image samples becomes increasingly impor-
tant for controlling the quality of industrial products. How-
ever, the performance of existing visual anomaly detection
models [12–17] does not meet the requirement for accurate
semantic anomaly detection. To this end, we focus on image-
level anomaly detection, which can enable substandard prod-
ucts to be identified from a large number of test samples in
industrial manufacturing.

In real-world applications, however, data from an anomaly
detection task often exhibit uncertainty and imbalance in
the distribution between the labelled abnormal and normal
data [12]. Specifically, it is often difficult for us to precisely
define anomalies within a dataset for any given anomaly
detection task, and the number of normal samples typically
far exceeds that of anomalous samples. Consequently, when
traditional supervised binary classifiers are employed for
anomaly detection tasks, the uncertainty and imbalance of
the anomaly data can limit the ability of a model in correctly
identifying anomalies. To address this issue, current visual
anomaly detection methods commonly utilize unsupervised
or self-supervised methods [3, 14, 17]. These methods solely
utilize normal data to learn the distribution of normal data.
Any data that deviate from this learned distribution are then
classified as anomalies.
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In addition, image-level anomaly detection is one of
the most challenging tasks [1, 12], as detection failures
can range from subtle defects (such as thin scratches), to
partial structural changes (such as missing components),
and even to image-level semantic differences (such as novel
class objects). Existing state-of-the-art methods have at-
tempted to learn the feature distribution of normal samples
via generative adversarial networks (GANs) [12, 13, 18],
normalizing-flows [16, 19] or other unsupervised adaptation
methods [14, 15]. Nevertheless, these existing methods have
not fully explored and utilized the fusion of semantic and
spatial features from visual image samples to improve the
performance of visual anomaly detection.

To address the aforementioned issues, we propose a new
model based on the normalizing flow that can be used for
semantic anomaly detection while preserving the detection
performance for texture anomaly detection tasks as much
as possible. Our model consists of two main components:
a pre-trained feature extractor for extracting image features
and a normalizing flow model for anomaly detection. For
the pre-trained feature extractor, we choose a model based
on the Vision Transformer (ViT) [20]. We select this model
because it not only provides rich texture features (patch
tokens) similar to traditional convolutional neural networks
(CNNs) but also captures the semantic features (class token)
of the images by leveraging its self-attention mechanism to
aggregate these texture features. Unlike existing normalizing
flow-based anomaly detection methods that heavily rely on
spatial texture features, our method focuses on leveraging
semantic features (class token) to learn the distribution of
normal data for semantic anomaly detection. In other words,
our method mainly targets one-class classification (OCC),
treating all normal samples as one class and abnormal sam-
ples as another class. It is different from out-of-distribution
(OOD) scenarios, in which multiple classes of normal data
have their own distributions, and abnormal data does not
follow the distributions of any of these normal classes.

Furthermore, we recognize the importance of incorpo-
rating spatial texture features when dealing with texture
anomaly detection tasks. We design various feature fusion
strategies to enhance the capability of our model to per-
ceive spatial information. Firstly, we employ global average
pooling to aggregate spatial texture features, which are then
concatenated with the semantic features extracted by the pre-
trained feature extractor. Additionally, we utilize class at-
tention techniques and learnable queries [21] to incorporate
fresh semantic information from texture features and fuse it
with the original semantic information (class token). Then,
we replace the learnable query with pre-trained semantic
features as the query, transforming the attention aggregation
process into one guided by the original semantic features.

We conduct extensive evaluations on the popular seman-
tic anomaly detection dataset Cifar10 and texture anomaly
detection dataset MVTec. We achieve an Area Under the Re-
ceiver Operating Characteristic Curve (AUROC) at 99.3%
for the Cifar10 dataset which represents approximately
the state-of-the-art in this field. Furthermore, our model

achieves competitive results in texture anomaly detection
on the MVTec dataset. Finally, we compute the average
anomaly detection performance of our model for both datasets.
In this regard, our model outperforms other existing meth-
ods.

Our primary contributions can be summarized as fol-
lows:

• We propose a novel anomaly detection architecture
based on the normalizing flow model. This architec-
ture effectively maps normal data to a Gaussian distri-
bution, leveraging the explicit utilization of semantic
attributes as learning objectives during the process of
fitting the distribution of normal data.

• In order to enhance the performance of anomaly detec-
tion, we propose a novel feature fusion module incor-
porated into each layer of the normalizing flow model.
This module facilitates the integration of texture fea-
tures and semantic features, leading to improved fit-
ting of the distribution function to the normal data.

• Through extensive experiments on well-known datasets
for semantic anomaly detection, we demonstrate that
our method surpasses state-of-the-art baselines. The
results validate the superior performance and effec-
tiveness of our approach.

This paper serves as a comprehensive extension of its
conference version [22]1. Specifically, we investigate the
detection performance of our proposed model by incor-
porating more pre-trained extractors derived from various
pre-training tasks such as image classification and some
proxy tasks. Furthermore, we introduce various feature fu-
sion methods, such as global average pooling, attention
mechanisms, and learnable query vectors. Through ablation
experiments, we thoroughly compare the experimental re-
sults of our model under different pre-trained extractors and
feature fusion methods. This rigorous evaluation enables us
to determine the most suitable pre-trained extractors and
fusion methods for our model. Additionally, we conduct
comparisons with more state-of-the-art (SOTA) anomaly de-
tection methods. The results show that our method achieves
the SOTA results on semantic anomaly detection tasks.

2. Related Work
The current visual anomaly detection methods can be

primarily categorized into two types. The first type focuses
on studying the original image data, including techniques
like image reconstruction [12, 18] and some self-supervised
methods utilizing the original images for various proxy tasks
[14, 15] to learn the distribution of images. The second type
involves combining pre-trained models with other anomaly
detection methods. This includes combining a pre-trained
feature extractor with traditional unsupervised clustering
methods [3, 4] for anomaly detection, as well as methods that

1Code is available at https://github.com/SYLan2019/SANF-AD
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leverage normalizing flows along with pre-trained feature
extractors for anomaly detection [16, 19].

Reconstruction-based methods are the most commonly
used algorithms for visual anomaly detection tasks [12, 13,
23]. These methods typically employ various GANs [24] to
reconstruct instances of normal data and learn their feature
distribution during the training phase. Subsequently, during
the testing phase, the trained model is used to simultane-
ously reconstruct both normal and anomalous data, with
the reconstruction error serving as a criterion for detecting
anomalies. However, the training process of GAN involves
an adversarial interplay between the generator and discrim-
inator, rendering this method susceptible to some problems
such as mode collapse, vanishing gradients, and exploding
gradients [24]. Therefore, it is usually difficult to build
a well-performed anomaly detection model by only using
GAN to learn the distribution of the raw image data. In
recent years, the self-attention mechanism has been used
to improve the GAN models for anomaly detection, such
as AnoTrans [18]. However, the self-attention-based GAN
models are usually limited in capturing fine-grained details.
In addition, simulated prior anomaly patches are used in [25]
to learn a joint representation of an anomaly image and its
corresponding anomaly-free reconstruction. Nevertheless,
there are differences between the simulated anomalies and
the actual anomalies, which may limit the performance of
this algorithm in practical applications.

Self-supervised learning methods [14, 15] have also
emerged as a promising approach for anomaly detection.
These methods often utilize diverse proxy tasks to learn
the distribution of normal data. These tasks include training
classifiers to recognize artificially rotated images [26] and
employing contrastive learning to increase the representa-
tion distance between normal data and artificially generated
anomalous data via image augmentation operations [14].
However, a common challenge faced by these methods is
the tendency towards overfitting due to the limited diversity
of artificially constructed data. To address this issue, Reiss
et al. [3] introduced feature extractors pre-trained on large-
scale datasets such as ImageNet [27], leveraging the rich
prior information embedded in these pre-trained models, and
clustered these features with techniques such as K-Nearest
Neighbors (KNN) and Gaussian Mixture Model (GMM),
leading to improved performance as compared with pre-
vious self-supervised methods. Building upon this founda-
tion, Cohen and Avidan [28] introduced a novel knowledge
distillation-based approach for anomaly detection, where
only the representation of normal data from the pre-trained
model was distilled to the student model. This approach
enhanced the student model’s focus on the normal data
and enlarged the representation distance of anomalous data
between the student and teacher model, effectively address-
ing the anomaly detection task. In addition, self-supervised
learning is used in [29] to represent the intra-class varia-
tion at the patch level, which improves the performance of
anomaly detection, but can be difficult to represent patches

at different scales. To sum up, the above techniques pri-
marily consider semantic features derived from pre-trained
feature extractors and overlook the remaining spatial texture
information, limiting their effectiveness in texture anomaly
detection.

Recently, Rudolph et al. [16] introduced the normalizing
flow in the field of anomaly detection. They combined spatial
texture features extracted by a pre-trained feature extractor
with a normalizing flow model to learn the feature distribu-
tion of normal data, achieving state-of-the-art detection re-
sults in texture anomaly detection tasks. However, as pointed
out in [30], the models based on normalizing flow tend to
learn feature information of images at the spatial texture
level, which often lead to poor performance when applied to
semantic anomaly detection. Therefore, existing approaches
based on the normalizing flow have inherent limitations in
semantic anomaly detection and are prone to model instabil-
ity when dealing with complex texture features in semantic
datasets [30].

3. Proposed Method
We introduce an unsupervised method based on normal-

izing flow to learn the distribution of normal data during the
training phase. In the testing phase, any data that deviates
from the learned distribution in the training phase is con-
sidered as an anomaly, and the anomaly score is determined
based on the model’s loss. As highlighted in [3], an effective
anomaly detection algorithm requires both accurate feature
representation and a high-performance classifier. Thus, our
model consists of two components: a pre-trained feature ex-
tractor for obtaining image features and a normalizing flow
model for anomaly detection. In Section 3.1, we elaborate on
how we select and utilize the pre-trained feature extractor.
In Section 3.2, we introduce our proposed semantic-aware
normalizing flow model. In Section 3.3, we introduce our
proposed feature fusion method about how we integrate and
combine texture and semantic features in each layer of the
model. Finally, in Section 3.4, we provide insights into the
optimization method utilized to train our model.
3.1. Feature Extractor

In the field of anomaly detection, current methods [3,
17] often rely on pre-trained feature extractors based on
Convolutional Neural Networks (CNNs). These approaches
utilize pre-trained CNN networks to extract feature maps,
followed by global average pooling [3, 17, 27] to derive
semantic features from the images. However, unlike con-
ventional CNN-based techniques [27], the attention-based
Vision Transformer (ViT) [20] not only captures spatial
features (i.e., feature maps) but also leverage the class token
to get the semantic features by aggregating all patch tokens
within an image, eliminating the need for additional pooling
operations to obtain semantic features [20]. Hence, we opt
to employ a feature extractor based on ViT architecture to
effectively capture the semantic as well as spatial texture
features within the images. This allows us to detect anoma-
lies in images from both the overall semantic and texture
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Figure 1: Overview of the proposed method: we use the pre-trained ViT to extract semantic features (class token) and spatial
features (patch tokens) of image 𝑋 . Then we use 𝑛 stacked flow-based learning layers (FLL) to transform 𝑦𝑠𝑒𝑚 into the latent
variable 𝑧 . The details for the feature fusion module (FFM) are shown in Figure 2, which is used to fuse 𝑦𝑠𝑒𝑚 and 𝑦𝑠𝑝𝑎.

perspectives. In the specific implementation, we will utilize
the entire output of the last module of ViT.

Assuming the input image is denoted as 𝑋, the semantic
features and spatial texture features of 𝑋 can be extracted
from the pre-trained ViT as

(𝑦𝑠𝑒𝑚, 𝑦𝑠𝑝𝑎) = 𝑉 𝑖𝑇 (𝑋) (1)
where 𝑦𝑠𝑒𝑚 ∈ 𝑅𝑑 represents the class token which is used
to signify semantic features, 𝑦𝑠𝑝𝑎 ∈ 𝑅𝑁×𝑑 denotes the patch
tokens which represent spatial texture features, 𝑑 represents
the feature dimension, and 𝑁 is the number of patch tokens
within the input image for ViT.
3.2. Semantic-aware Normalizing Flow

Our proposed approach is built upon the normalizing
flow method to estimate the distribution of semantic features
of images. In contrast to existing normalizing flow methods
that primarily emphasize spatial texture details for texture
anomaly detection, our approach prioritizes the overall se-
mantic information in the images. In other words, rather than
estimating the distribution of the entire spatial texture details
(patch tokens), we directly estimate the distribution of the
semantic features, specifically the class token, obtained from
the output of the pre-trained feature extractor. Furthermore,
to enhance our model’s learning of the distribution of nor-
mal data, we draw inspiration from [21], which proposes
that semantic attributes can be further consolidated through
spatial features. Consequently, as shown in Figure 1, we
introduce a feature fusion module (FFM) within each flow-
based learning layer (FLL) to seamlessly integrate additional
spatial feature information. For detailed integration, please
refer to Section 3.3.

As depicted in Figure 1, our normalizing flow model
𝐹𝑓𝑙𝑜𝑤 = 𝑓1◦𝑓2◦...◦𝑓𝐾 consists of𝐾 individual FLLs, repre-
sented as 𝑓𝑖, where the input is denoted as 𝑦𝑠𝑒𝑚,𝑖𝑛, represent-
ing the semantic feature, and the output is denoted as 𝑦𝑠𝑒𝑚,𝑜𝑢𝑡.
The process begins by randomly permuting 𝑦𝑠𝑒𝑚,𝑖𝑛 ∈ 𝑅𝑑

along the channel dimension, followed by an equal division
into two vectors, namely 𝑦1𝑠𝑒𝑚,𝑖𝑛 ∈ 𝑅

𝑑
2 and 𝑦2𝑠𝑒𝑚,𝑖𝑛 ∈ 𝑅

𝑑
2 .

This can be summarized as follows:
[𝑦1𝑠𝑒𝑚,𝑖𝑛, 𝑦

2
𝑠𝑒𝑚,𝑖𝑛] = 𝑠𝑝𝑙𝑖𝑡(𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝑦𝑠𝑒𝑚,𝑖𝑛)) (2)

where 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(⋅) randomly permutes a vector along the
channel dimension and 𝑠𝑝𝑙𝑖𝑡(⋅) evenly divides a vector into
two along the channel dimension. Subsequently, we feed
𝑦1𝑠𝑒𝑚,𝑖𝑛 and 𝑦2𝑠𝑒𝑚,𝑖𝑛 into the FFM, which generates the scal-
ing and translation parameters [𝑠1, 𝑡1] and [𝑠2.𝑡2], respec-
tively. These parameters are then applied to their corre-
sponding inputs, 𝑦1𝑠𝑒𝑚,𝑖𝑛 and 𝑦2𝑠𝑒𝑚,𝑖𝑛, to compute the outputs
[𝑦1𝑠𝑒𝑚,𝑜𝑢𝑡, 𝑦

2
𝑠𝑒𝑚,𝑜𝑢𝑡]. According to [31], for simplicity in loss

computation and to satisfy the affinity property, we apply
the exponential function to the scaling parameters 𝑠1 and 𝑠2as follows:

[𝑠1, 𝑡1] = 𝐹𝐹𝑀(𝑦1𝑠𝑒𝑚,𝑖𝑛, 𝑦𝑠𝑝𝑎) (3)
𝑦2𝑠𝑒𝑚,𝑜𝑢𝑡 = 𝑦2𝑠𝑒𝑚,𝑖𝑛 ⊙ 𝑒𝑠1 + 𝑡1 (4)
[𝑠2, 𝑡2] = 𝐹𝐹𝑀(𝑦2𝑠𝑒𝑚,𝑜𝑢𝑡, 𝑦𝑠𝑝𝑎) (5)
𝑦1𝑠𝑒𝑚,𝑜𝑢𝑡 = 𝑦1𝑠𝑒𝑚,𝑖𝑛 ⊙ 𝑒𝑠2 + 𝑡2 (6)
𝑦𝑠𝑒𝑚,𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑦1𝑠𝑒𝑚,𝑜𝑢𝑡, 𝑦

2
𝑠𝑒𝑚,𝑜𝑢𝑡) (7)

where ⊙ denotes element-wise multiplication. Finally, we
concatenate 𝑦1𝑠𝑒𝑚,𝑜𝑢𝑡 and 𝑦2𝑠𝑒𝑚,𝑜𝑢𝑡 along the channel dimension
to obtain the output 𝑦𝑠𝑒𝑚,𝑜𝑢𝑡:

𝑦𝑠𝑒𝑚,𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑦1𝑠𝑒𝑚,𝑜𝑢𝑡, 𝑦
2
𝑠𝑒𝑚,𝑜𝑢𝑡) (8)

Similar to the approach proposed in [31], we also employ
soft-clamping [32] to maintain model stability:

𝜎𝛼(𝑠) =
2𝛼
𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 𝑠

𝛼
(9)

where 𝛼 is the hyperparameter of the soft-clamping, and 𝑠
represents the scaling parameter produced by the FFM.
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Figure 2: We designed fusion methods that combine pooling and attention techniques to integrate semtantic feature 𝑦𝑠𝑒𝑚 and
spatial texture features 𝑦𝑠𝑝𝑎.

3.3. Feature Fusion Methods
To enhance the fitting of our model to normal data, we

have incorporated spatial texture features of images into
the perception process. Figure 2 illustrates our approach,
which involves designing multiple feature fusion methods.
We assume that 𝑦𝑠𝑒𝑚 ∈ 𝑅𝑑 and 𝑦𝑠𝑝𝑎 ∈ 𝑅𝑁×𝑑 , and 𝑂𝑢𝑡 ∈
𝑅𝑑 that represents the output feature after fusion, where 𝑑
represents the feature dimension, and 𝑁 is the number of
patch tokens in the input image.
Fusion Method 1: Similar to the approach described in
reference [3], we employ a traditional global average pooling
layer to extract the semantic information of 𝑦𝑠𝑝𝑎, as shown
below:

𝑂𝑢𝑡 = 𝐺𝐴𝑃 (𝑦𝑠𝑝𝑎) (10)
where 𝐺𝐴𝑃 represents the global average pooling layer.
Fusion Method 2: Inspired by the class attention and self-
attention in [21], we aggregate the spatial features 𝑦𝑠𝑝𝑎through learnable query and self-attention. Initially, we ran-
domly initialize a feature vector 𝑞 ∈ 𝑅𝑑 as the query for
self-attention. We use a fully connected layer to generate
𝑄 and concatenate 𝑞 with 𝑦𝑠𝑝𝑎 to obtain 𝑚 ∈ 𝑅(𝑁+1)×𝑑 .
Subsequently, we use two fully connected layers to get 𝐾 ∈
𝑅(𝑁+1)×𝑑 and 𝑉 ∈ 𝑅(𝑁+1)×𝑑 from 𝑚 as follows:

𝑚 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑞, 𝑦𝑠𝑝𝑎) (11)
𝑄 = 𝑊𝑞𝑞 + 𝑏𝑞 (12)
𝐾 = 𝑊𝑘𝑚 + 𝑏𝑘 (13)
𝑉 = 𝑊𝑣𝑚 + 𝑏𝑣 (14)

where 𝑊𝑞 ,𝑊𝑘,𝑊𝑣 ∈ 𝑅𝑑×𝑑 represent the parameters of the
fully connected layers responsible for generating the embed-
ding vectors in each attention module, while 𝑏𝑞 , 𝑏𝑘, 𝑏𝑣 ∈

𝑅𝑑 are the corresponding biases. The variable 𝑑 represents
the size of the embedding vectors. Next, we calculate the
attention score matrix as follows:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 )∕
√

𝑑 (15)
Afterward, the vector 𝑉 , weighted by the matrix 𝐴, is input
into a fully connected (FC) layer to generate 𝑂𝑢𝑡 ∈ 𝑅𝑑 :

𝑂𝑢𝑡 = 𝑊𝑜𝐴𝑉 + 𝑏𝑜 (16)
where 𝑊𝑜 ∈ 𝑅𝑑×𝑑 and 𝑏𝑜 ∈ 𝑅𝑑 denote the parameters of
the FC layer.
Fusion Method 3: In this fusion method, we substitute the
learnable query with the pre-trained semantic feature (class
token) to serve as the guiding query. The only difference
from Method 2 is that when generating Q, we replace the
initialized 𝑞 with 𝑦𝑠𝑒𝑚, and 𝑚 is obtained by concatenating
𝑦𝑠𝑒𝑚 with 𝑦𝑠𝑝𝑎, as shown below:

𝑚 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑦𝑠𝑒𝑚, 𝑦𝑠𝑝𝑎) (17)
𝑄 = 𝑊𝑞𝑦𝑠𝑒𝑚 + 𝑏𝑞 (18)

The calculations for 𝐾 , 𝑉 , 𝐴, and 𝑂𝑢𝑡 remain the same as in
Method 2, which is the method presented in the conference
version [22]. Finally, for 𝑦𝑠𝑒𝑚, we encode it further using
a Multilayer Perceptron (MLP) module. The output of the
MLP, along with the 𝑂𝑢𝑡 obtained from the fusion methods,
is concatenated and fed into the final linear projection layer
(FC layer) to produce the fusion results, represented by
𝑠 ∈ 𝑅𝑑 and 𝑡 ∈ 𝑅𝑑 . Specifically, this can be expressed as
follows:

[𝑠, 𝑡] = 𝑠𝑝𝑙𝑖𝑡(𝐹𝐶(𝐶𝑜𝑛𝑐𝑎𝑡(𝑀𝐿𝑃 (𝑦𝑠𝑒𝑚), 𝑜𝑢𝑡𝐶𝐴))) (19)
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3.4. Loss Function
We have designed a model based on normalizing flow

to map the semantic feature 𝑦𝑠𝑒𝑚 of an image to a latent
space 𝑧, where both 𝑧 and 𝑦𝑠𝑒𝑚 have the same dimensions.
Our primary objective is to optimize the model’s parameters
to maximize the likelihood 𝑃𝑌 (𝑦𝑠𝑒𝑚) of normal data. To
achieve this, we define the likelihood of feature 𝑦𝑠𝑒𝑚 based
on reference [33] as follows:

𝑝𝑌 (𝑦𝑠𝑒𝑚) = 𝑝𝑍 (𝑧)
|

|

|

𝑑𝑒𝑡 𝜕𝑧
𝜕𝑦𝑠𝑒𝑚

|

|

|

(20)
where 𝑧 = 𝐹𝑓𝑙𝑜𝑤(𝑦𝑠𝑒𝑚), and 𝐹𝑓𝑙𝑜𝑤 ∶ 𝑌 → 𝑍 represents
our proposed model based on normalizing flow. We assume
𝑦𝑠𝑒𝑚 ∼ 𝑝𝑌 (𝑦𝑠𝑒𝑚) and 𝑧 ∼ 𝑝𝑍 (𝑧) . As in [34], the normalizing
flow method exhibits a bijective property. This property
allows us to learn the distribution of 𝑦𝑠𝑒𝑚 by leveraging
the distribution of the latent variable 𝑧. Consequently, max-
imizing likelihood 𝑝𝑌 (𝑦𝑠𝑒𝑚) is equivalent to maximizing
the likelihood 𝑝𝑍 (𝑧). Finally, assuming 𝑧 ∼  (0, 𝐼) and
minimizing the negative log-likelihood −𝑙𝑜𝑔𝑝𝑌 (𝑦𝑠𝑒𝑚), we
optimize our model by defining a loss function as follows:

𝑙𝑜𝑔𝑝𝑌 (𝑦𝑠𝑒𝑚) = 𝑙𝑜𝑔𝑝𝑍 (𝑧) + 𝑙𝑜𝑔 ||
|

𝑑𝑒𝑡 𝜕𝑧
𝜕𝑦𝑠𝑒𝑚

|

|

|

= −
‖𝑧‖22
2

+ 𝑙𝑜𝑔 1
√

2𝜋
+ 𝑙𝑜𝑔 ||

|

𝑑𝑒𝑡 𝜕𝑧
𝜕𝑦𝑠𝑒𝑚

|

|

|

(21)

𝑜𝑠𝑠 =
‖𝑧‖22
2

− 𝑙𝑜𝑔 ||
|

𝑑𝑒𝑡 𝜕𝑧
𝜕𝑦𝑠𝑒𝑚

|

|

|

) (22)

where ‖ ⋅ ‖22 denotes the 𝐿2 norm, and |

|

|

𝑑𝑒𝑡 𝜕𝑧
𝜕𝑦𝑠𝑒𝑚

|

|

|

represents
the absolute determinant of the Jacobian matrix, which sig-
nifies the volume change from 𝑦𝑠𝑒𝑚 to 𝑧. For further detailed
information, please refer to reference [33].

During training, we aim to maximize the likelihood of
𝑧, which is transformed from 𝑦𝑠𝑒𝑚. Consequently, during the
inference phase, the likelihood of features originating from
normal data exceeds that of features originating from abnor-
mal data. Therefore, we adopt the negative log likelihood of
the features as the anomaly score.

4. Experiments and Results
In order to evaluate the effectiveness of our proposed

model for semantic and texture anomaly detection, we con-
ducted a comprehensive set of experiments as follows:

• Comparative Experiments with State-of-the-Art Vi-
sual Anomaly Detection Algorithms: In this experi-
ment, we compared our method against current main-
stream visual anomaly detection algorithms to demon-
strate our model’s competitiveness and effectiveness.

• Feature Fusion Ablation Experiment: This experiment
aims to demonstrate the importance of fusing spatial
texture features and compare the performance of dif-
ferent feature fusion methods.

• Performance of Different Pre-trained Visual Feature
Extractors (ViTs): In this experiment, we assessed

the adaptability of our model to various pre-trained
ViTs obtained from different tasks, including image
classification [20], self-supervised learning (DINO
[35] and DINOV2 [36]), and multimodal tasks (CLIP
[37]).

• Ablation Experiments for Modules in Our Model:
We combine different modules to form several model
variants, and then evaluate the effectiveness of each
module by comparing the performance between the
variants.

• Ablation Experiments with Hyperparameters: We ex-
plore how the model’s performance changes under
different hyperparameter settings and show its ability
to generalize across diverse anomaly detection tasks
without excessive tuning.

The experimental setup consisted of the following hard-
ware configuration: Intel(R) Xeon(R) Silver 4208 CPU and
NVIDIA GeForce RTX 3090 GPU. The software configura-
tion included CUDA 11.3 and Cudnn for parallel computing,
Python 3.8 programming language, and PyTorch 1.10.0 deep
learning framework.
4.1. Dataset and Implementation Details

To validate the effectiveness of our model in semantic
anomaly detection, we conducted extensive experiments on
the widely recognized Cifar10 dataset [38]. This dataset
comprises 50,000 training images and 10,000 test images,
with a resolution of 32×32 pixels and a total of 10 classes.
In line with the established practice in semantic anomaly
detection, we employed the novelty detection setting [3],
where one class is considered normal, and the remaining
classes are treated as anomalies.

For assessing the applicability of our proposed fusion
method in texture anomaly detection tasks, we performed
comprehensive experiments on the MVTec Anomaly Detec-
tion (AD) dataset [1]. This dataset encompasses 5 texture
and 10 object categories, totaling 5,354 images from the
manufacturing domain. To evaluate the effectiveness of our
model in this task, we followed the single-class classification
protocol, also known as cold-start anomaly detection [39].
Specifically, we trained separate single-class classifiers on
normal training samples of each category.

Furthermore, we selected three additional datasets com-
monly employed in semantic anomaly detection: CIFAR100
[40], STL10 [41], and CatsVsDogs [3]. Additionally, we
utilized the Lbot dataset [12], which is specifically designed
for texture anomaly detection. The example images from
these six datasets are presented in Figure 3.
Hyperparameters: For fair comparisons, we use similar
hyperparameter settings to those of the existing normalizing
flow based anomaly detection model [16]. Table 1 provides
an overview of the crucial hyperparameter settings. These
include batchsize, 𝛽 coefficients, soft-clamping hyperpa-
rameter 𝛼 in the normalizing flow, optimizer, and network
depth. We firmly believe that the careful selection of these
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Figure 3: Sample images from semantic datasets (the four
figures in the top row are from the Cifar10, Cifar100, STL10,
and CatsVsDogs datasets, respectively) and industrial texture
anomaly datasets (the two figures in the bottom row are
sequentially from the MVTec and Lbot datasets).

Table 1
Model hyperparameter settings.

hyperparameters Value
batchsize 8
optim Adam
(𝛽1, 𝛽2) (0.9,0.999)
FLLs 4
lr 0.0005
𝛼 2

hyperparameters enables a fair and accurate assessment of
the model’s performance.
Model Evaluation Metrics: To evaluate the performance of
our model for anomaly detection, we utilize the commonly
used metric in unsupervised anomaly detection, i.e, Area
Under the Receiver Operating Characteristic Curve (AU-
ROC) [42]. AUROC is a performance metric for classifica-
tion models, which measures the accuracy of the model’s
classification at various thresholds. The ROC curve is a
curve plotted with False Positive Rate (FPR) on the x-axis
and True Positive Rate (TPR) on the y-axis. FPR represents
the proportion of negative samples incorrectly predicted as
positive among all negative samples, while TPR represents
the proportion of positive samples correctly predicted as
positive among all positive samples. By setting different
thresholds on the anomaly scores output by the model, we
calculate corresponding FPR and TPR values, generating a
set of data points that form the ROC curve. The area under
this curve represents the AUROC [42] metric.

In our specific implementation, we utilize the Sklearn
deep learning framework. Additionally, we adopt the Mean-
AUROC (M-AUROC) as the evaluation metric to assess
the performance of our model on both semantic anomaly
detection and texture anomaly detection datasets.
4.2. Experimental Results and Analysis

In order to show the effectiveness of the proposed model
in details, we have conducted four aspects of analysis: 1)
Comparison of performance between our algorithm and
the existing state-of-the-art (SOTA) baselines. 2) Ablation
study. We conduct in-depth experiments on the performance
of different feature fusion modules in our model. We show

the effectiveness of each module, and analyze the perfor-
mance of different pre trained feature extractors in our pro-
posed model. 3) Analysis of the computational complexity of
our model. 4) Experimental comparison of the model using
different hyperparameters.
4.2.1. Comparative Experiments with SOTA Baselines

We performed comprehensive comparisons with recent
algorithms in both semantic anomaly detection and texture
anomaly detection tasks. Here, we selected ViT-Large as the
feature extractor and the third fusion method for our model.
For semantic anomaly detection, we considered recent al-
gorithms such as Transformly [28], Panda [3], MSAD [17],
and CLIP-OE [43]. Notably, Transformly [28] and CLIP-
OE [43] employ pre-trained ViT feature extractors. In the
realm of texture anomaly detection, our comparisons en-
compassed algorithms such as Differnet [16], CSFlow [31],
MKD [44], SIMPLENET [39], RD4AD [45], and OCRGAN
[46]. Among these, Differnet [16] and CSFlow [31] are
based on the normalizing flow for anomaly detection. The
performance evaluation of these methods was conducted
only using the unlabeled normal data across various anomaly
detection datasets. The experimental results, including the
M-AUROC (Mean-AUROC) metric representing the aver-
age performance of each model in both anomaly detection
scenarios, are summarized in Table 2. The MSAD-V1 and
MSAD-V2 methods in this table correspond to using pre-
trained CNN and ViT within MSAD, respectively.

In the task of semantic anomaly detection on the Cifar10
dataset, our proposed semantic-aware flow model exhibits a
significant improvements over existing flow-based anomaly
detection methods such as Differnet and CSFlow. Specifi-
cally, our method achieves an improvement of 29.8% and
3.8% in terms of AUROC compared to these two meth-
ods, demonstrating the clear superiority of our proposed
flow model in semantic anomaly detection tasks. Further-
more, our method surpasses other existing methods for se-
mantic anomaly detection and achieves state-of-the-art re-
sults on the Cifar10 dataset. For the MVTec dataset in the
texture anomaly detection task, our method also achieves
competitive performance. Compared to existing semantic
anomaly detection methods like Panda, MSAD-V1, MSAD-
V2, Transformly, and Clip-OE, our method shows significant
improvements of 10.4%, 9.7%, 13.8% 9.0%, and 10.1%,
respectively. This indicates that our method is not limited
to semantic anomaly detection tasks alone and can be suc-
cessfully applied to texture anomaly detection tasks as well.
However, our method falls slightly short in reaching the
state-of-the-art performance in the field of texture anomaly
detection.

The compared methods in texture anomaly detection
tasks emphasize the analysis of spatial information in im-
ages and examine various details across the entire spatial
feature map to identify anomalies. Although our method also
incorporates spatial texture features, we focus on perceiving
the semantic information of the images rather than directly
analyzing the complete spatial texture features. Therefore,
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Table 2
The AUROC comparison results [%] between our method and recent excellent baselines on various datasets.

Model Cifar10 MVTec ⋄Cifar100 ⋄STL10 ⋄CatsVsDogs ⋄Lbot M-AUROC
Transformly (CVPR2022 Workshop) [28] 98.3 87.9 97.3 99.2 99.5 89.2 95.2
Panda (CVPR2021) [3] 96.2 86.5 94.1 97.6 97.3 97.2 94.8
MSAD-V1 (AAAI2023) [17] 98.6 87.2 96.4 98.9 99.3 97.1 96.0
MSAD-V2 (AAAI2023) [17] 98.6 83.1 97.6 99.2 99.4 86.4 94.1
CLIP-OE (TMLR2022) [43] 98.6 86.8 - - - - Δ92.6
Differnet (WACV2021) [16] 69.5 94.7 68.3 81.4 85.3 93.4 82.1
CSFlow (WACV2022) [31] 95.5 98.7 93.2 98.9 98.2 99.1 97.2
MKD (CVPR2021) [44] 84.5 87.8 - - - - Δ86.1
SIMPLENET (CVPR2023) [39] 86.5 99.6 70.2 84.9 63.7 82.6 81.2
RD4AD (CVPR2022) [45] 86.5 98.5 80.6 80.4 42.2 88.2 79.4
OCRGAN [46] 89.4 98.3 - - - - Δ93.9
Ours 99.3 96.9 98.7 99.7 99.6 97.0 98.5

− denotes no official source code released. Δ denotes only the average of the first two columns.
⋄ denotes re-running the official source codes with default parameter settings on this dataset.

Table 3
Performance comparison of different feature fusion methods.

Cifar10 MVTec Lbot
Without feature fusion 99.1 89.2 89.2

Feature Fusion Method 1 99.3 95.2 92.1
Feature Fusion Method 2 99.3 95.0 93.8
Feature Fusion Method 3 99.3 96.9 97.0

our method falls slightly short in matching the performance
of the state-of-the-art methods in texture anomaly detec-
tion tasks. However, the average detection performance (M-
AUROC) of our method on both the Cifar10 and MVTec
datasets demonstrates its superiority over all existing meth-
ods.
4.2.2. Ablation Study
1) Feature Fusion Comparative Experiments:

We devised three fusion methods to integrate spatial
features into our proposed flow-based model. For more
detailed information, please refer to Section 3.3. We first
compared the results of these three fusion methods. Based on
the experimental results in Table 3, the simple global average
pooling in Method 1 exhibited slightly inferior performance
in the texture anomaly detection task on the MVTec dataset.
This could be attributed to the fact that average pooling
tends to lose some spatial texture information. While in
Method 2, the utilization of learnable query vectors and self-
attention mechanism from [21] also yielded less satisfactory
results, potentially due to the direct use of randomly ini-
tialized learnable query vector, which hindered the model’s
ability to swiftly perceive spatial information. In contrast,
our third fusion method, where we directly employed the
semantic feature 𝑦𝑠𝑒𝑚 from the perceptual process instead
of the randomly initialized learnable vector as the query
to guide the extraction of relevant information from spatial
texture features through self-attention mechanism, achieved
superior performance. Therefore, we decided to select the
third fusion method as our default fusion method.

As shown in Table 3 , by only incorporating the semantic
feature from the feature extractor and the normalizing flow

method (i.e., no feature fusion module used), our proposed
model achieved an impressive AUROC score of 99.1% on
the widely used semantic anomaly detection dataset Cifar10.
Nevertheless, the model exhibited relatively lower perfor-
mance on the texture anomaly detection datasets, MVTec
and Lbot. However, we incorporated spatial texture fea-
tures and significantly enhanced the model’s performance
on the MVTec and Lbot datasets, with an approximately
7.7% and 7.8% increase in the AUROC metric, respectively.
In summary, integrating spatial features into our semantic-
based normalizing flow model can not only improve the
performance of semantic anomaly detection, but also greatly
enhance its ability to detect texture anomalies. Therefore,
this experiment validates that our designed feature fusion
module can effectively integrate some useful semantic in-
formation from the spatial features to enhance semantic
distribution learning of our model.

Furthermore, in order to visualize the response of our
feature fusion module to anomaly discrimination, we plot
histogram in Figure 4 to show the distribution of normal
and abnormal scores of the test data on three datasets: Lbot,
Cifar10, and MVTec. Specifically, the top row of Figure
4 shows the distribution of the scores for the normal and
abnormal test samples from the Lbot dataset. The middle
row of Figure 4 shows the histogram results on the Cifar10
dataset when bird is used as the abnormal class. The bottom
row of Figure 4 shows the histogram results on the grid
subset of the MVTec dataset. The left column of Figure 4
shows the results of not using feature fusion module (FFM)
while the right one displays the results of using feature
fusion. As shown in Figure 4, the left histogram shows
that the overlapping zone between these two distributions
is larger than that in the right one. That’s to say, if no FFM
is used in the model, it is more difficult to distinguish the
anomaly from normal data.

Finally, we compare the impact of using semantic fea-
tures 𝑦𝑠𝑒𝑚 and spatial features 𝑦𝑠𝑝𝑎 as the main input of
the flow-based learning layer. Specifically, we swapped the
semantic and texture features by using the spatial feature 𝑦𝑠𝑝𝑎as the input of FLL and incorporating 𝑦𝑠𝑒𝑚 through FFM. We
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Figure 4: The distribution of normal and abnormal scores in the
Lbot, Cifar10, and MVTec datasets is presented from top to
bottom. The left shows the results of not using feature fusion
while the right one displays the results of using feature fusion.
Clearly, it is earier to distinguish the anomaly from normal data
when the feature fusion module is used in the model.

Table 4
The AUROC results [%] are obtained when we use 𝑦𝑠𝑒𝑚 and
𝑦𝑠𝑝𝑎 as the main inputs for each flow-based learning layer of
our model, respectively.

Cifar10 MVTec
Using 𝑦𝑠𝑒𝑚 as the input 99.3 96.9
Using 𝑦𝑠𝑝𝑎 as the input 96.3 91.2

conducted experiments on the Cifar10 and MVTec datasets,
and the results are presented in Table 4. When utilizing
spatial texture information as input, the model achieved
competitive results in the texture anomaly detection task on
the MVTec dataset. However, it performed poorly in the
semantic anomaly detection task on the Cifar10 dataset. This
suggests that this method (i.e., using the spatial features
as the input of FLL) is not suitable for semantic anomaly
detection tasks.
2) Performance of Different Pre-trained Feature Extrac-
tors:

We further evaluated the performance of the proposed
model using different pre-trained feature extractors, all of
which are based on Vision Transformers. Firstly, we utilized
ViT models pre-trained on the Imagenet21K dataset [20]
for image classification, including ViT-Base and ViT-Large.
Secondly, we employed ViT models pre-trained on self-
supervised tasks, such as DINO [35] and DINOV2 [36]. Fi-
nally, we selected a ViT model pre-trained on the multimodal
task Clip [37]. Comparative experiments were conducted for

Table 5
The AUROC results [%] obtained by using different pretraining
feature extractors on the MVTec and Cifar10 datasets.

Pre-trained feature extractor Cifar10 MVTec M-AUROC
DINO 95.0 96.6 95.8

DINOV2 99.1 97.6 98.3
Clip 96.3 95.9 96.1

ViT-Base 98.5 94.9 96.7
ViT-Large 99.3 96.9 98.1

each feature extractor to assess the model’s performance in
semantic and texture anomaly detection tasks, employing
the third fusion method. Please refer to Table 5 for specific
experimental results. The M-AUROC metric represents the
average performance across both anomaly detection scenar-
ios.

As shown in Table 5, the ViT model pre-trained on image
classification tasks exhibited the highest performance on
the semantic anomaly detection dataset Cifar10, achieving
an impressive experimental result of 99.3%. For the tex-
ture anomaly detection dataset MVTec, our model demon-
strated favorable results when utilizing feature extractors
pre-trained on various tasks. Among them, the DINOV2
[36] pre-trained visual feature extractor yielded the best
experimental result of 97.6%. These findings highlight the
adaptability of our model to different pre-trained feature
extractors for texture anomaly detection tasks.

The ViT model pre-trained on image classification tasks
is highly effective in extracting semantic information from
images. As a result, our experiments achieved outstand-
ing performance in semantic anomaly detection when em-
ploying the model. Conversely, the DINO series used the
ViT models pre-trained on various self-supervised tasks,
emphasizing the capture of spatial information in images.
Among these models, DINOV2 stands out as the latest and
most powerful model, combining multiple pretraining tasks.
By utilizing the pre-trained DINOV2 model, we achieved
remarkable results in texture anomaly detection tasks. On
the other hand, the Clip model, trained for multi-modal
tasks, requires additional modal information, such as textual
context associated with the image. It has been confirmed in
[43] that incorporating semantic information yields excellent
performance in semantic anomaly detection task.

To further compare the impact of DINO and ViT-Large
feature extractors, we conducted comparative experiments
on multiple datasets (i.e. Cifar10, Cifar100, MVTec, Lbot).
In addition, our method based on DINO is compared to
a method that directly combines DINO and KNN (i.e.,
DINO+KNN), which can be used to demonstrate the ef-
fectiveness of our flow-based learning module combined
with DINO. This result is shown in Table 6. From the
average performance on multiple datasets, we can observe
that the proposed method based on DINO is better than
the DINO+KNN method. Moreover, with ViT-Large, the
proposed method further improves the results. Therefore,
to maintain our model’s semantic awareness, we decide to
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Table 6
The AUROC results [%] using DINO and ViT-Large as the
feature extractors, performed on four datasets.

Cifar10 Cifar100 MVTec Lbot Average
DINO+KNN 96.2 96.4 92.7 99.3 96.4
DINO+Ours 95.0 97.6 96.6 99.4 97.2
ViT-Large+Ours 99.3 98.7 96.9 97.0 98.0

Table 7
The AUROC results [%] on Cifar10 for variants of our model.

CNN
𝑉 𝑖𝑇
(𝑠𝑒𝑚)

𝑉 𝑖𝑇
(𝑠𝑝𝑎) KNN 𝐹 𝑙𝑜𝑤 AUROC

Variant1 ✓ ✓ 95.7
Variant2 ✓ ✓ 98.7
Variant3 ✓ ✓ 64.1
Variant4 ✓ ✓ 99.1
Variant5 ✓ ✓ 96.3
Variant6 ✓ ✓ ✓ 99.3

select the ViT-Large pre-trained on image classification task
as the primary feature extractor.
3) Ablation Experiments for Modules in Our Model:

To evaluate the contribution of each module in our
model, we designed six variants, each representing a combi-
nation of different modules. We conducted ablation experi-
ments on the Cifar10 and MVTec datasets. The experimental
results are shown in Tables 7 and 8, respectively. Here,
“CNN” refers to the pre-trained ResNet152, “𝑉 𝑖𝑇 (𝑠𝑒𝑚)”
refers to the use of the semantic features extracted by the pre-
trained ViT-Base as the input to the system. The “𝑉 𝑖𝑇 (𝑠𝑝𝑎)”
denotes that the spatial texture features extracted by pre-
trained ViT-Base is used as the input to the system. The
“𝐹 𝑙𝑜𝑤” represents that FLL is used as the classifier for
anomaly recognition. With “KNN”, the K-Nearest Neigh-
bors (KNN) is used as the classifier. Each variant is com-
posed of different modules. For example, Variant1 adopts
CNN as feature extractor, and then uses KNN to classify
whether the extracted features are from abnormal samples.

In terms of Tables 7 and 8, semantic features are more
effective as compared with CNN based features for anomaly
detection. In addition, with semantic features ViT (sem) as
the main input, flow-based learning modules can further im-
prove the anomaly detection performance. By comparing the
experimental results from Variant2 to Variant5 in Table 8,
we can see that the spatial features play an important role in
texture anomaly detection tasks. For example, Variant5 even
performs better than Variant6 on MVTec. However, using
only spatial features does not yield satisfactory results in
semantic anomaly detection tasks (see Table 7). The results
of Variant6 in Tables 7 and 8 indicate that our proposed
feature fusion module achieves better average performance
on the Cifar10 and MVTec datasets. Therefore, these ab-
lation experiments further demonstrate the advantage of
our proposed model over the baselines for both semantic
anomaly detection and texture anomaly detection.

Table 8
The AUROC results [%] on MVTec for variants of our model.

CNN
𝑉 𝑖𝑇
(𝑠𝑒𝑚)

𝑉 𝑖𝑇
(𝑠𝑝𝑎) KNN 𝐹 𝑙𝑜𝑤 AUROC

Variant1 ✓ ✓ 87.1
Variant2 ✓ ✓ 83.1
Variant3 ✓ ✓ 93.1
Variant4 ✓ ✓ 89.2
Variant5 ✓ ✓ 97.4
Variant6 ✓ ✓ ✓ 96.9

4.2.3. Computational Complexity Analysis
To analyze computational complexity of our proposed

model, we have conducted experiments and analyzed the
inference time and parameter quantity of our model. We
use the common FLOPs calculation tool (such as thop2) to
calculate the FLOPs and number of parameters for all the
models during training. The inference time of the model here
is defined as the time from the start of anomaly detection
processing on a single input image to the end of obtaining
its output result during testing. The results are presented in
Table 9, where the results of all baselines were calculated
using their official source code on the data with same batch
size under the same hardware environment.

Compared to the baseline CSFlow [31], our proposed
flow-based learning model uses ViT (sem) as the main input
instead of ViT (spa). As a result, the number of model
parameters and inference time used are greatly reduced, as
shown in Table 9. Specifically, the number of parameters
can be reduced by four fifths, and the inference time is also
reduced by about four fifths. This is mainly because the
amount of input (i.e., mainly semantic features) we use is
significantly reduced compared to the usual spatial features
in the baseline CSFlow.

As the simplest flow-based learning model, the Differnet
[16] only uses fully connected (FC) layers in each flow learn-
ing module, so its FLOPs and inference time are very small,
but its anomaly detection performance is relatively poor. For
SIMPLENET [39], due to its simple network structure, only
a shallow feature adapter (one type of CNN-based module)
is used to transfer the pre-trained extracted local features
to the target domain, and then a simple binary classifier
is used for anomaly discrimination. However, the official
code provided by the model requires a significant amount of
time for post-processing the output to refine spatial texture
localization, thus its inference time is also relatively long.
In addition, the Flops calculation is not only related to
the number of network parameters, but also to the size of
features processed in the model. Our model mainly processes
semantic feature information, and the size of the processed
features is much smaller than the size of the spatial feature
in the SIMPLENET model. Although the network parameter
size of our model (48.28M) is approximately 12 times that
of SIMPLENET (3.94M). However, our model’s FLOPS is
not more than 2.5 times larger than SIMPLENET’s.

2https://github.com/Lyken17/pytorch-OpCounter
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Table 9
The comparison of computational complexity between our
method and the latest baselines.

FLOPs Params Infer-time
Panda (CVPR2021) [3] 11.60G 60.19M 31ms
MSAD (AAAI2023) [17] 11.86G 85.65M 30ms
Differnet (WACV2021) [16] 171.22M 172.21M 29ms
CSFlow (WACV2022) [31] 65.90G 275.22M 270ms
SIMPLENET (CVPR2023) [39] 1.01G 3.94M 68ms
Ours 2.46G 48.28M 55ms

Table 10
the AUROC results [%] for varying numbers of FLL layers.

Dataset numbers of FLL layers (𝑛𝑙𝑎𝑦𝑒𝑟𝑠)
2 4 6 8

Cifar10 99.2 99.3 99.3 99.1
MVTec 96.2 96.9 96.5 96.7

Table 11
The AUROC results [%] for different hyperparameter configu-
rations on Cifar10

𝛼 = 2 𝛼 = 3 𝛼 = 4
(𝛽1 = 0.8, 𝛽2 = 0.8) 99.13 99.34 99.30

(𝛽1 = 0.9, 𝛽2 = 0.999) 99.31 99.23 99.35

In addition, compared to the latest baseline MSAD [17],
which utilizes pre-trained feature extractors, our model has
a similar number of parameters and inference time, but it
has a significant reduction in FLOPs. This is mainly because
MSAD requires a large amount of computation to train and
refine its pre-trained feature extractor network. Moreover,
because MSAD requires fine-tuning without freezing the
parameters of its pre-trained feature extractor, the number
of MSAD model parameters is 1.8 times that of our model
parameters.
4.2.4. Hyperparameters Discussion

To evaluate the robustness of our model across various
scenarios, we have conducted a set of comparative experi-
ments under different parameter settings and datasets. These
experiments assess the impact of key parameters on both
semantic anomaly detection (Cifar10) and texture anomaly
detection (MVTec) tasks. Specifically, we investigate the ef-
fects of 𝛼 in soft-clamping, 𝛽1 and 𝛽2 in the Adam optimizer,
and the number of FLL layers (𝑛𝑙𝑎𝑦𝑒𝑟𝑠) in the network.

As shown in Tables 10, 11 and 12, our model exhibits
minimal fluctuations in the AUROC metric across different
parameter configurations, with variations within approxi-
mately 1%. This narrow range of variation demonstrates that
our method does not necessitate excessive fine-tuning and
can achieve efficient transfer in diverse anomaly detection
tasks. Based on the model’s performance and taking com-
putational efficiency into account, we have set the hyper-
parameters as follows: 𝛼 = 2, 𝛽1 = 0.9, 𝛽2 = 0.999, and
𝑛𝑙𝑎𝑦𝑒𝑟𝑠 = 4.

Table 12
The AUROC results [%] for different hyperparameter configu-
rations on MVTec

𝛼 = 2 𝛼 = 3 𝛼 = 4
(𝛽1 = 0.8, 𝛽2 = 0.8) 96.43 95.19 96.01

(𝛽1 = 0.9, 𝛽2 = 0.999) 96.94 95.75 96.56

5. Conclusion
We have presented a novel normalizing flow model

specifically designed to learn the distribution of seman-
tic features of normal data, aiming to address the chal-
lenge of semantic anomaly detection in images. Our model
achieves state-of-the-art detection performance in an unsu-
pervised mode, surpassing other methods on popular seman-
tic anomaly detection datasets. In addition, we investigate
the utilization of spatial features to enhance the learning
of semantic distributions, enabling our model to achieve
competitive performance on the dataset of texture anomaly
detection tasks. However, it is important to acknowledge
that our model has not yet reached optimal performance in
texture anomaly detection. Our model is mainly based on
semantic learning, focusing on the overall distribution of
normal data, and rarely paying attention to the specific lo-
cations of local texture anomalies. As a result, our proposed
model is currently not conducive to anomaly localization.
Therefore, further advancements in incorporating spatial
features are essential to enhance the model’s performance
in texture anomaly detection. We will continue to develop
new methods to enhance the performance of our model in
texture anomaly detection.
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Table 13
The category-specific AUROC comparison results [%] between our model and the latest baselines on the MVTec dataset.

Categories
Methods CSFlow

[31]
SIMPLENET

[39]
RD4AD

[45]
MSAD
[17]

Panda
[3]

Differnet
[16]

Transformly
[28] Ours

bottle 99.8 100 100 99.2 98.1 99.0 98.8 100
cable 99.1 99.9 95.0 80.4 86.2 95.9 90.1 96.0

capsule 97.1 97.7 96.3 82.4 88.0 86.9 85.0 97.3
carpet 100 99.7 98.9 95.6 88.5 92.9 99.2 96.8
grid 99 99.7 100 58.2 54.4 84.0 72.0 98.1

hazelnut 99.6 100 99.9 91.7 96.9 99.3 93.0 99.8
leather 100 100 100 99.7 97.9 97.1 100 100

metal_nut 99.1 100 100 81.9 81.2 96.1 95.2 98.6
pill 8.6 99.0 96.6 76.3 80.4 88.8 83.2 93.2

screw 97.6 98.2 97.0 58.7 66.8 96.3 56.1 90.0
tile 100 99.8 99.3 97.4 98.8 99.4 96.2 100

toothbrush 91.9 99.7 99.5 94.1 84.7 98.6 92.7 95.8
transistor 99.3 100 96.7 73.1 91.5 91.1 76.7 94.3

wood 100 100 99.2 72.9 94.8 99.8 95.7 97.8
zipper 99.7 99.9 98.5 85.1 93.3 95.1 85.2 95.8

Average 98.7 99.6 98.5 83.1 86.5 94.9 87.9 96.9

Table 14
The category-specific AUROC comparison results [%] between our model and the latest baselines on the Cifar10 dataset.

Categories
Methods CSFlow

[31]
SIMPLENET

[39]
RD4AD

[45]
MSAD
[17]

Panda
[3]

Differnet
[16]

Transformly
[28] Ours

plane 93.3 65.3 87.3 98.4 97.4 75.2 96.6 99.3
car 96.5 69.0 90.1 99.5 98.4 68.1 98.5 99.4
bird 92.8 69.2 75.4 97.8 93.9 63.4 96.6 99
cat 90.7 70.8 56.8 97.1 90.6 60.7 96.0 98.7
deer 94.7 73.0 82.8 97.9 97.5 78.3 98.5 99.4
dog 95.5 69.4 71.7 97.2 94.4 66.2 98.3 98.9
frog 98.4 83.4 86.9 99.6 97.5 73.5 98.5 99.7
horse 98.6 73.4 85.9 99.7 97.5 64.3 99.1 99.7
ship 97.5 72.4 89.6 99.5 97.6 75.3 98.4 99.6
truck 96.9 69.0 88.1 99.3 97.4 69.4 99.1 99.3

Average 95.5 71.4 81.4 98.6 96.2 69.5 98.3 99.3

A. Appendix: Supplement category-specific
results on the Cifar10 and MVTec datasets

In order to further analyze the performance of our model in
semantic anomaly detection, we have provided category-specific
results on the Cifar10 and MVTec datasets, as shown in Tables
13 and 14, respectively. As for the MVTec dataset, it needs to be
noted that unlike some existing studies which divide the MVTec
data into texture class data and object class data for separate
discussions, in our experiments, all the MVTec data are combined
as the input data for our model. That is to say, we treat equally all
the samples of anomalies (including local texture anomalies and
object category anomalies) as input samples of abnormal class. For
example, "leather" and "cable" respectively represent a texture class
and an object class in MVTec, both of which were uniformly used as
input samples in our experiments (as shown in Tables 13 and 14).

Table 13 and 14 can serve as detailed comparisons of the
anomaly detection performance for specific categories in the dataset.
Based on the experimental results in these two tables, which also ef-
fectively support the conclusion in Table 2, our model outperforms
all current baselines in terms of average detection performance (M-
AUROC) on the datasets (such as Cifar10 and MVTec). However,
it should be pointed out that the results in Tables 13 and 14 are
obtained via re-running the official codes for each baseline with

its default parameter-setting, so some of the final average results
may differ from Table 2. The reason for such deviation may be that
the default parameter-setting in the baseline’s official code may not
necessarily be optimal for a certain dataset.

From the results of these two tables, it can be seen that our
proposed semantic-aware flow model can obtain competitive per-
formance on both texture anomaly (MVTec) and semantic anomaly
(Cifar10) datasets. For the MVTec dataset in the texture anomaly
detection task, compared to existing semantic anomaly detection
methods like Panda, MSAD, and Transformly, our method gives
significant improvements of 10.4%, and 13.8%, 9.0%, respectively.
Whereas, our method falls slightly short in the field of texture defect
detection, when compared to the latest texture defect detection
methods like SIMPLENET and RD4AD. However, as for the task
of semantic anomaly detection on the Cifar10 dataset, our method
surpasses all baselines and achieves state-of-the-art results.
B. Visualize the representations of the models

on the Cifar10 and MVTec datasets
Using t-SNE [47], we visualized the clustering distribution (i.e.

the representation of the final layer) for our model, and the baselines
CSFlow and MSAD as in Figures 5 and 6. As shown in these two
figures, the t-SNE plots of our model show less overlap between
abnormal examples and real normal examples. Therefore, we can
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Figure 5: The t-SNE visualization of the representations obtained by three models (i.e. MSAD, CSFlow and the proposed method)
on the Cifar10 dataset. We plot embeddings of normal class (blue) and abnormal class (red). A zoom-in view of the green area
in the second column is shown in the leftmost column.

Figure 6: The t-SNE visualization of representations obtained by the models (MSAD, CSFlow and the proposed method) on the
MVTec dataset. We plot embeddings of normal class (blue) and abnormal class (red).

clearly see that our model distinguishes between abnormal and
normal samples better than the baseline methods.
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